To evaluate the potential of conventional glass ionomer cement (GIC), Biodentine™, MTA, and Portland cement to induce mineral density changes in carious dentin compared to zinc oxide eugenol control cement (ZOE). Fifty blocks of bovine root dentin were prepared and a biofilm model using ATCC strains of S.mutans, S.sobrinus, and L.casei was used to promote artificial dentin lesions. After demineralization, the blocks were randomly divided into the five cement groups. Half of the surface of each specimen received the tested material and the other half was covered with wax (control). Samples were stored in phosphate buffered saline solution for 30days and after that were scanned in a micro-CT with standardized parameters. Dentin mineral density changes were calculated using differences in plot profiles of the exposed and control carious dentin. Friedman's test, followed by Wilcoxon signed-rank test was used with 5% significance. Mean ΔZ values for the cements were 48.63 ± 19.09 for the control (ZOE), 63.31 ± 32.59 for Biodentine™, 114.63 ± 72.92 for GIC, 109.56 ± 66.28 for MTA, and 106.88 ± 66.02 for Portland cement. All cements showed a statistically significant increase in ΔZ values compared to the control, but Biodentine™ values were statistically significantly lower compared to GIC and the other calcium silicate cements. Tested materials present potential to induce mineral density changes in carious bovine dentin. MTA, Portland, and GIC showed higher bioactivity potential than Biodentine™. Based on minimally invasive concept, materials with remineralization potential can be used to preserve diseased but still repairable dental tissue.
Read full abstract