Normal rat kidney (NRK) fibroblasts have electrophysiological properties and intracellular calcium dynamics that are dependent upon their growth stage. In the present study we show that this differential behavior coincides with a differential calcium entry that can be either capacitative or non-capacitative. Confluent cells made quiescent by serum deprivation, which have a stable membrane potential near − 70 mV and do not show spontaneous intracellular calcium oscillations, primarily exhibit the capacitative mechanism for calcium entry, also called store-operated calcium entry (SOCE). When the quiescent cells are grown to density-arrest in the presence of EGF as the sole polypeptide growth factor, these cells characteristically fire spontaneously repetitive calcium action potentials, which propagate throughout the whole monolayer and are accompanied by intracellular calcium transients. These density-arrested cells appear to exhibit in addition to SOCE also receptor-operated calcium entry (ROCE) as a mechanism for calcium entry. Furthermore we show that, in contrast to earlier studies, the employed SOCs and ROCs are permeable for both calcium and strontium ions. We examined the expression of the canonical transient receptor potential channels (Trpcs) that may be involved in SOCE and ROCE. We show that NRK fibroblasts express the genes encoding Trpc1, Trpc5 and Trpc6, and that the levels of their expression are dependent upon the growth stage of the cells. In addition we examined the growth stage dependent expression of the genes encoding Orai1 and Stim1, two proteins that have recently been shown to be involved in SOCE. Our results suggest that the differential expression of Trpc5, Trpc6, Orai1 and Stim1 in quiescent and density-arrested NRK fibroblasts is responsible for the difference in regulation of calcium entry between these cells. Finally, we show that inhibition or potentiation of SOCE and ROCE by pharmacological agents has profound effects on calcium dynamics in NRK fibroblasts.