DNA is now firmly established as a versatile and robust platform for achieving synthetic nanostructures. While the folding of single molecules into complex structures is routinely achieved through engineering basepair sequences, very little is known about the emergence of structure on larger scales in DNA fluids. The fact that polymeric DNA fluids can undergo phase separation into dense fluid and dilute gas opens avenues to design hierachical and multifarious assemblies. Here, we investigate to which extent the phase behavior of single-stranded DNA fluids can be captured by a minimal model of semiflexible charged homopolymers while neglecting specific hybridization interactions. We first characterize the single-polymer behavior and then perform direct coexistence simulations to test the model against experimental data. While low-resolution models show great promise to bridge the gap to relevant length and time scales, obtaining consistent and transferable parameters is challenging. In particular, we conclude that counterions not only determine the effective range of direct electrostatic interactions but also contribute to the effective attractions.
Read full abstract