Stochastic geometry has emerged as a powerful tool for modeling cellular networks, especially in dense deployment scenarios where inter-cell interference is significant. Previous studies have extensively analyzed multi-antenna systems with partial channel state information at the transmitter (CSIT) using stochastic geometry models. However, most of these works assume the use of infinite-resolution analog-to-digital converters (ADCs) at the receivers. Recent advances in low-resolution ADCs, such as one-bit ADCs, offer an energy-efficient alternative for millimeter-wave systems, but the interplay between limited feedback and one-bit ADCs remains underexplored in such networks. This paper addresses this gap by analyzing the optimal feedback rate that maximizes net spectral efficiency in dense cellular networks, modeled using stochastic geometry, with both limited feedback and one-bit ADC receivers. We introduce an approximation of the achievable spectral efficiency to derive a differentiable expression of the optimal feedback rate. The results show that while the scaling behavior of the optimal feedback rate with respect to the channel coherence time remains unaffected by the ADC’s resolution, the absolute values are significantly lower for one-bit ADCs compared to infinite-resolution ADCs. Simulation results confirm the accuracy of our theoretical approximations and demonstrate the impact of ADC resolution on feedback rate optimization.
Read full abstract