Objective To investigate the effect and mechanism of blocking the signaling pathways of the T-cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) and programmed death protein 1 (PD-1) in dendritic cell-cytokine induced killer (DC-CIK) cells on human lung adenocarcinoma A549 cells. Methods Peripheral blood mononuclear cells (PBMCs) were isolated and induced into mature DC-CIK cells by cytokines in vitro. After blocking the Tim-3 and PD-1 signaling transduction pathways with anti-Tim-3 and anti-PD-1 antibodies, DC-CIK cells were coincubated with A549 cells. The killing effect of DC-CIK cells against A549 cells was measured by a CCK-8 assay. The impact of DC-CIK cells on the invasion and migration ability of A549 cells was detected by the Transwell test. The apoptosis rate of DC-CIK cells and the ratio of CD4+, CD8+, and DC-CIK cell subsets were determined by flow cytometry. The cell proliferation of DC-CIK was detected by the CCK-8 assay. Results The antibodies of anti-Tim-3 antibody and anti-PD-1 could block Tim-3+ and PD-1+ DC-CIK cells and could significantly increase the killing effect of DC-CIK cells on A549 cells. The number of A549 cells under the microporous membrane of the Transwell chamber was reduced considerably in invasion and migration tests. Anti-Tim-3 and anti-PD-1 antibodies significantly reduced apoptosis of DC-CIK cells. No significant differences were observed in the ratios of CD4+ and CD8+ DC-CIK cell subsets or the proliferation capacity of DC-CIK cells in each group. Conclusion Blocking the Tim-3 and PD-1 signaling pathways of DC-CIK cells with antibodies can enhance the killing ability of DC-CIK cells in A549 cells and significantly suppress the invasion and migration ability of A549 cells. The potential mechanism may be related to reduced apoptosis of DC-CIK cells.
Read full abstract