This study presents the synthesis, characterization, and application of multifunctional PAMAM G2 and G4 dendrimers decorated with a linear fluorinated guanidino linker designed to improve gene delivery efficiency while minimizing cytotoxicity. For the first time, we were able to fine-tune the degree of grafting (DG) during the functionalization process through efficient "click" Michael addition, achieving the synthesis of a collection of six PAMAM conjugates that showed a significant enhancement in transfection efficiency (TE), surpassing the performance of traditional nonviral vectors. The incorporation of fluorinated moieties not only facilitated better deoxyribonucleic acid (DNA) condensation and TE but also introduced potential applications in 19F magnetic resonance imaging thanks to the sharp and intense fluorine nuclear magnetic resonance signals and favorable relaxation parameters. The new dendrimer conjugates demonstrated a promising balance between low cytotoxicity and high TE, with the low-generation PAMAM G2 with lower DG being the best-performing conjugate, making them strong candidates for further development in gene therapy. These findings highlight the potential of these multifunctional PAMAM dendrimers as efficient, nontoxic, and trackable gene delivery vectors.
Read full abstract