Clemastine has emerged as a promising therapy for the restoration of neurologic function in patients with multiple sclerosis (MS). However, clemastine and other agents with prodifferentiative effects on oligodendrocyte progenitor cells (OPCs) in rodent models have underperformed in clinical trials. We hypothesized that the preclinical studies showed more robust effects because of the abundance of OPCs in rodent models. To better examine the therapeutic potential of clemastine, we examined its effect on demyelinated white matter lesions in rabbits, which exhibit progenitor densities and limited remyelination more closely matching those found in tissues from patients with MS. We used lysolecithin to induce demyelination in white matter of New Zealand rabbits and then administered oral clemastine (10mg/kg/day) for various periods before assessing the OPC and oligodendrocyte (OL) populations in these lesions. Daily administration of clemastine for the full study period (56 days) increased oligodendrogenesis in white matter lesions. However, shorter durations of treatment failed to increase overall OL density despite enhancing OPC-to-OL differentiation. This effect was due to exhaustion of the OPC pool, as the differentiating progenitors were not replaced because of reduced OPC proliferation. Notably, delayed administration of clemastine led to an accumulation of activated OPCs expressing markers of senescence. Although capable of driving OL differentiation, clemastine treatment in rabbits hampered progenitor pool replenishment, induced senescence, and promoted conversion of microglia/macrophages to a proinflammatory phenotype. Whether these effects would also occur in humans or with other prodifferentiative therapies should be studied further, but our data suggest the need to carefully consider progenitor dynamics in the treatment of MS. ANN NEUROL 2024.
Read full abstract