Histone demethylation in cardiac hypertrophy is poorly understood. This study aims to determine the role of the histone demethylase LSD1 in pathological cardiac hypertrophy. Both isoprenaline (ISO)-treated and transverse aortic constriction (TAC)-treated rats developed hypertrophic hearts. LSD1 was significantly decreased; the histone marks mono- and dimethyl H3K4 and H3K9 (H3K4me1/2 and H3K9me1/2) were significantly up-regulated in the hypertrophic heart tissue, as well as the expression of the ANP, α-HMC and MLV-2v genes. An LSD1 inhibitor, OG-L002 could also induce cardiac hypertrophy and enhance the induction of cardiac hypertrophy by ISO. Overexpressed LSD1 abolished ISO-induced cardiac hypertrophy and downregulated H3K4me1/2 and H3K9me1/2 expression. Overexpression of LSD1 also reduced the expression of ANP, α-HMC and MLV-2v. In addition, we have reported isoprenaline (ISO) as one of the histone demethylase LSD1 inhibitors. This was confirmed by molecular docking, molecular dynamic studies and a histone demethylation assay. The H3K4me1/2 expression increases with the incubation of ISO in HEK 293T and HELA cells. CaMKII could be significantly activated by the LSD1 inhibitor OG-L002 as well as by ISO in rats. In summary, we have identified a novel role for LSD1 in initiating and maintaining cardiac hypertrophy.
Read full abstract