Catalan functions, the graded Euler characteristics of certain vector bundles on the flag variety, are a rich class of symmetric functions which include k\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$k$\\end{document}-Schur functions and parabolic Hall-Littlewood polynomials. We prove that Catalan functions indexed by partition weight are the characters of Uq(slˆℓ)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$U_{q}(\\widehat{\\mathfrak{sl}}_{\\ell })$\\end{document}-generalized Demazure crystals as studied by Lakshmibai-Littelmann-Magyar and Naoi. We obtain Schur positive formulas for these functions, settling conjectures of Chen-Haiman and Shimozono-Weyman. Our approach more generally gives key positive formulas for graded Euler characteristics of certain vector bundles on Schubert varieties by matching them to characters of generalized Demazure crystals.