The urgent need to mitigate climate change and reduce reliance on fossil fuels has driven the global shift towards renewable energy sources (RESs). However, the intermittent nature of RESs poses significant challenges to the widespread adoption of Zero-Carbon Smart Grids (ZCSGs). This study proposes a synergistic framework to address this hurdle. It utilizes energy storage systems (ESSs) by comparing Vanadium redox flow batteries (VRFBs) and Lithium ion batteries (LIBs) to identify the most suitable option for ZCSGs, with precise models enabling robust performance evaluation. Moreover, an accurate demand-side management (DSM) strategy considering power elasticity to manage discrepancies between electricity load, RES generation, and ESS availability is introduced for estimating fair, dynamic tariffs. An advanced load and weather-forecasting strategy is introduced for improving grid planning and management. An advanced optimization algorithm enhances grid stability and efficiency. Simulations demonstrate significant reductions in carbon footprint, peak power demand, and reliance on fossil fuels. The study finds that VRFBs outperform LIBs in cost and security, and dynamic tariffs based on accurate DSM significantly reduce energy costs. This work explores the challenges and opportunities of this integrated approach, offering policy recommendations and future research directions for truly optimized ZCSG implementation.
Read full abstract