Flight-by-feel (FBF) is an approach to flight control that uses dispersed sensors on the wings of aircraft to detect flight state. While biological FBF systems, such as the wings of insects, often contain hundreds of strain and flow sensors, artificial systems are highly constrained by size, weight, and power (SWaP) considerations, especially for small aircraft. An optimization approach is needed to determine how many sensors are required and where they should be placed on the wing. Airflow fields can be highly nonlinear, and many local minima exist for sensor placement, meaning conventional optimization techniques are unreliable for this application. The Sparse Sensor Placement Optimization for Prediction (SSPOP) algorithm extracts information from a dense array of flow data using singular value decomposition and linear discriminant analysis, thereby identifying the most information-rich sparse subset of sensor locations. In this research, the SSPOP algorithm is evaluated for the placement of artificial hair sensors on a 3D delta wing model with a 45° sweep angle and a blunt leading edge. The sensor placement solution, or design point (DP), is shown to rank within the top one percent of all possible solutions by root mean square error in angle of attack prediction. This research is the first to evaluate SSPOP on a 3D model and the first to include variable length hairs for variable velocity sensitivity. A comparison of SSPOP against conventional greedy search and gradient-based optimization shows that SSPOP DP ranks nearest to optimal in over 90 percent of models and is far more robust to model variation. The successful application of SSPOP in complex 3D flows paves the way for experimental sensor placement optimization for artificial hair-cell airflow sensors and is a major step toward biomimetic flight-by-feel.
Read full abstract