Major pathologic response (MPR), defined as ≤10% of residual viable tumor (VT), is a prognostic factor in non-small cell lung cancer (NSCLC) after neoadjuvant therapy. This study evaluated interobserver reproducibility in assessing MPR, compared area-weighted and unweighted VT (%) calculation, and determined optimal VT (%) cutoffs across histologic subtypes for survival prediction. This retrospective study included 108 patients with NSCLC who underwent surgical resection after neoadjuvant chemotherapy or chemoradiation at Seoul National University Bundang Hospital between 2009-2018. Three observers with varying expertise independently assessed tumor bed and VT (%) based on digital whole-slide images. Reproducibility in tumor bed delineation was reduced in squamous cell carcinoma (SqCC) with smaller tumor bed, although overall concordance was high (Dice coefficient, 0.96; IoU score, 0.92). Excellent agreement was achieved for VT (%) (ICC=0.959) and MPR using 10% cutoff (Fleiss' kappa=0.911). Shifting between area-weighted and unweighted VT (%) showed only one case differing in MPR status out of 81 cases. The optimal cutoff was 10% for both adenocarcinoma (ADC) and SqCC. MPR+ was observed in 18 patients (17%), with SqCC showing higher MPR+ rates (p=0.044), lower VT (%) (p<0.001), and better event-free survival (p=0.015) than ADC. MPR+ significantly improved overall survival (p=0.023), event-free survival (p=0.001), and lung cancer-specific survival (p=0.012). While MPR assessment demonstrated robust reproducibility with minimal impact from the tumor bed, attention is warranted when evaluating smaller tumor beds in SqCC. A 10% cutoff reliably predicted survival across histologic subtypes with higher interobserver reproducibility.