The present research work is intended to synthesize a novel tracking control strategy for a class of nonlinear polynomial systems characterized by multiple well-defined delays in state variables under the presence of nonsymmetric input saturation. The design strategy makes full use of an associate’s memory nonlinear state feedback control with integral-based actions. An original control scheme joining block-pulse functions method combined with the augmented error modeling technique is used to infer the controller’s tracking gains. The objective is to convert the investigated nonlinear algebraic problem governed by specifying constraints into a constrained linear one that can be solved in the constrained least square methodology. Detailed novel sufficient conditions proving the closed-loop augmented system’s practical stability are elaborated. The instance of a twofold inverted pendulums benchmark is considered so as to exhibit the benefits of the proposed control approach.
Read full abstract