The present paper investigates the enhancement of the therapeutic effect of Paclitaxel (a potent anticancer drug) by increasing its cellular uptake in the cancerous cells with subsequent reduction in its cytotoxic effects. To fulfill these goals the Paclitaxel (PTX)-Biotinylated PAMAM dendrimer complexes were prepared using biotinylation method. The primary parameter of Biotinylated PAMAM with a terminal HN2 group - the degree of biotinylation - was evaluated using HABA assay. The basic integrity of the complex was studied using DSC. The Drug Loading (DL) and Drug Release (DR) parameters of Biotinylated PAMAM dendrimer-PTX complexes were also examined. Cellular uptake study was performed in OVCAR-3 and HEK293T cells using fluorescence technique. The statistical analysis was also performed to support the experimental data. The results obtained from HABA assay showed the complete biotinylation of PAMAM dendrimer. DSC study confirmed the integrity of the complex as compared with pure drug, biotinylated complex and their physical mixture. Batch 9 showed the highest DL (12.09%) and DR (70%) for 72 h as compared to different concentrations of drug and biotinylated complex. The OVCAR-3 (cancerous) cells were characterized by more intensive cellular uptake of the complexes than HEK293T (normal) cells. The obtained experimental results were supported by the statistical data. The results obtained from both experimental and statistical evaluation confirmed that the biotinylated PAMAM NH2 dendrimer-PTX complex not only displays increased cellular uptake but has also enhanced release up to 72 h with the reduction in cytotoxicity.
Read full abstract