Selecting suitable Megacity Solid Waste Disposal (MSWD) sites is a challenging task in densely populated deltas of developing countries, exacerbated by limited public awareness about waste management. One of the major environmental concerns in Dhaka City, the world's densest megacity, is the presence of dumps close to surface water bodies resources. This study employed the Geographic Information System (GIS)-Analytic Hierarchy Process (AHP) framework to integrate geomorphological (slope and flow accumulation), geological (lithological and lineament), hydrogeological (depth to groundwater table and surface waterbody), socioeconomic (Land use land cover, distance to settlement, road, and airport), and climatological (wind direction) determinants, coupled by land-use and hydro-environmental analyses, to map optimal dumps (MSWDO) sites. The resulting preliminary (MSWDP) map revealed 15 potential landfill areas, covering approximately 5237 hectares (ha). Combining statistical analysis of restricted areas (settlements, water bodies, land use) with AHP-based ratings, the MSWDO map revealed two optimal locations (2285ha). Additionally, the hydro-environmental analysis confirmed the unsuitability of northern sites due to shallow groundwater (< 5.43m) and thin clay, leaving 11 options excluded. Sites 12 (Zone A, 2255ha) and 15 (Zone B, 30ha), with deeper groundwater tables and thicker clay layers, emerged as optimal choices for minimizing environmental risks and ensuring effective long-term waste disposal. This study successfully integrates remote sensing, geospatial data, and GIS-AHP modeling to facilitate the development of sustainable landfill strategies in similar South Asian delta megacities. Such an approach provides valuable insights for policymakers to implement cost-effective and sustainable waste management plans, potentially minimizing the environmental risks to achieve Sustainable Development Goals (SDGs) 6, 11, 13, and 15.