Tracking large-scale movements of fishes in the ocean’s midwaters, below the euphotic zone and above the seafloor, is extremely challenging. Archival satellite telemetry devices rely on light, sea surface temperature, or bottom depth data to estimate location. Consequently, geolocation of fishes inhabiting the twilight (mesopelagic: 200–1000 m) and midnight (bathypelagic: 1000–4000 m) zones has been restricted to hypothesized movement routes, thereby precluding a baseline ecological understanding against which to assess potential anthropogenic impacts. We assessed the viability of comparing depth-temperature profiles measured by animal-borne satellite tags against those from 3D ocean-resolving models and incorporated known locations from acoustic telemetry to enable a quantitative framework for deep-sea geolocation. Testing of alternative, data-driven likelihood scenarios on a deep-water shark species assemblage with marked variation in modal depth distributions confirmed that the methodological frontier of geolocation can be advanced into the twilight and midnight zones. We identify key limitations in deep-water geolocation, and ways to overcome them, identifying a viable path for robust location estimates that can help address the knowledge gap on fish movement ecology in the deep sea. Our findings suggest that leveraging state-of-the-art geolocation approaches, in combination with novel technologies, raises new opportunities for studying enigmatic deep-ocean ecosystems.