Universal stress proteins (USPs) play essential roles in plant development, hormonal regulation, and abiotic stress responses. However, the characteristics and functional divergence of USP family members have not been studied in blueberry (Vaccinium corymbosum). In this study, we identified 72 VcUSP genes from the Genome Database for Vaccinium. These VcUSPs could be divided into five groups based on their phylogenetic relationships. VcUSPs from groups Ⅰ, Ⅳ, and Ⅴ each possess one UspA domain; group Ⅰ proteins also contain an ATP-binding site that is not present in group Ⅳ and Ⅴ proteins. Groups Ⅱ and Ⅲ include more complex proteins possessing one to three UspA domains and UspE or UspF domains. Prediction of cis-regulatory elements in the upstream sequences of VcUSP genes indicated that their protein products are likely involved in phytohormone signaling pathways and abiotic stress responses. Analysis of RNA deep sequencing data showed that 21 and 7 VcUSP genes were differentially expressed in response to UV-B radiation and exogenous abscisic acid (ABA) treatments, respectively. VcUSP41 and VcUSP68 expressions responded to both treatments, and their encoded proteins may integrate the UV-B and ABA signaling pathways. Weighted gene co-expression network analysis revealed that VcUSP22, VcUSP26, VcUSP67, VcUSP68, and VcUSP41 were co-expressed with many transcription factor genes, most of which encode members of the MYB, WRKY, zinc finger, bHLH, and AP2 families, and may be involved in plant hormone signal transduction, circadian rhythms, the MAPK signaling pathway, and UV-B-induced flavonoid biosynthesis under UV-B and exogenous ABA treatments. Our study provides a useful reference for the further functional analysis of VcUSP genes and blueberry molecular breeding.