MicroRNAs (miRNAs) are closely related to numerous complex human diseases, therefore, exploring miRNA-disease associations (MDAs) can help people gain a better understanding of complex disease mechanism. An increasing number of computational methods have been developed to predict MDAs. However, the sparsity of the MDAs may hinder the performance of many methods. In addition, many methods fail to capture the nonlinear relationships of miRNA-disease network and inadequately leverage the features of network and neighbor nodes. In this study, we propose a deep matrix factorization model with variational autoencoder (DMFVAE) to predict potential MDAs. DMFVAE first decomposes the original association matrix and the enhanced association matrix, in which the enhanced association matrix is enhanced by self-adjusting the nearest neighbor method, to obtain sparse vectors and dense vectors, respectively. Then, the variational encoder is employed to obtain the nonlinear latent vectors of miRNA and disease for the sparse vectors, and meanwhile, node2vec is used to obtain the network structure embedding vectors of miRNA and disease for the dense vectors. Finally, sample features are acquired by combining the latent vectors and network structure embedding vectors, and the final prediction is implemented by convolutional neural network with channel attention. To evaluate the performance of DMFVAE, we conduct five-fold cross validation on the HMDD v2.0 and HMDD v3.2 datasets and the results show that DMFVAE performs well. Furthermore, case studies on lung neoplasms, colon neoplasms, and esophageal neoplasms confirm the ability of DMFVAE in identifying potential miRNAs for human diseases.