Within the agricultural domain, accurately categorizing the freshness levels of fruits and vegetables holds immense significance, as this classification enables early detection of spoilage and allows for appropriate grouping of products based on their intended export destinations. These processes necessitate a system capable of meticulously classifying fruits and vegetables while minimizing labor expenditures. The current study concentrates on developing an advanced model that can effectively categorize the freshness status of each fruit and vegetable as 'good,' 'medium,' or 'spoiled.' To achieve this objective, various artificial intelligence models, including CNN, AlexNet, ResNet50, GoogleNet, VGG16, and EfficientB3, have been implemented, attaining remarkable success rates of 99.75%, 97.97%, 96.71%, 99.49%, 98.75%, and 99.81%, respectively.
Read full abstract