Monitoring China's carbon dioxide (CO2) concentration is essential for formulating effective carbon cycle policies to achieve carbon peaking and neutrality. Despite insufficient satellite observation coverage, this study utilizes high-resolution spatiotemporal data from the Orbiting Carbon Observatory 2 (OCO-2), supplemented with various auxiliary datasets, to estimate full-coverage, monthly, column-averaged carbon dioxide (XCO2) values across China from 2015 to 2022 at a spatial resolution of 0.05° via the deep forest model. The 10-fold cross-validation results indicate a correlation coefficient (R) of 0.95 and a determination coefficient (R²) of 0.90. Validation against ground-based station data yielded R values of 0.93, and R² values reached 0.81. Further validation from the Greenhouse Gases Observing Satellite (GOSAT) and the Copernicus Atmosphere Monitoring Service Reanalysis dataset (CAMS) produced R² values of 0.87 and 0.80, respectively. During the study period, CO2 concentrations in China were higher in spring and winter than in summer and autumn, indicating a clear annual increase. The estimates generated by this study could potentially support CO2 monitoring in China.
Read full abstract