BackgroundIron is one of the key microelements in the mammalian body and is the most abundant metal in the brain. Iron, a very important chemical element in the body of mammals, is the most abundant metal in the brain. It participates in many chemical reactions taking place in the central nervous system acting as a cofactor in key enzymatic reactions involved in neurotransmitter synthesis and degradation, dendritic arborization, and myelination. Moreover, iron accumulation in the brain has been implicated in the pathogenesis of neurogenerative disorders.Material and methodsThe aim of our study was to assess the influence of iron administered orally (30 mg/kg) to rats in the neonatal period (p12-p14) by testing the performance of rats in the open field and social interaction tests, and by evaluating the recognition memory, monoamine levels in some brain structures, and BDNF mRNA expression. The behavioral and biochemical tests were performed in adult p88-p92 rats.ResultsIron administered to rats in the neonatal period induced long-term deficits in behavioral tests in adult rats. It reduced the exploratory activity in the open field test. In the social interaction test, it induced deficits in the parameters studied, and decreased memory retention. Moreover, iron changed the brain monoamine levels in some studied brain structures and decreased the expression of BDNF mRNA in the hippocampus.ConclusionsAll earlier and our present results indicated that iron administered to rats in the neonatal period induced an increase in oxidative stress which resulted in a change in the brain monoamine levels and decreased BDNF mRNA expression which may play a role in iron-induced memory impairment in adult rats.
Read full abstract