Although it has been recognized that females are more susceptible to chemical-induced liver injury, the effects of dibutyl phthalate (DBP), a widely used synthetic chemical, on female liver structure and function are under-researched. Here, we sought to investigate the effects of DBP on histological, stereological, and biochemical parameters, as well as global gene expression in female rat liver. Female Wistar rats were exposed to 100, 500, and 5000 mg DBP/kg diet for 28 days, corresponding to 8.6, 41.43, and 447.33 mg DBP/kg body weight (B.W.)/day, respectively. The highest dose (447.33 mg DBP/kg B.W./day) was between the no-observed-adverse-effect level (NOAEL) and the lowest-observed-adverse-effect level for liver toxicity, whereas two lower doses (8.6 and 41.43 mg DBP/kg B.W./day) were below the NOAEL. Analysis of hematoxylin and eosin-stained sections revealed an increased volume of hepatocytes, their nuclei and cytoplasm, while the volume of sinusoids decreased in DBP-exposed groups compared to the control. Examination of Periodic acid-Schiff-stained sections showed reduced glycogen content, which was the most prominent in the highest dose group. Increased glutathione S-transferase and catalase activities, and decreased GSH content and superoxide dismutase activity were observed in DBP-exposed groups. The mRNA sequencing revealed DBP-induced dose-specific changes in various genes and biological functions in female rat liver. The highest number of deregulated genes was observed in the 500 mg DBP/kg diet group. In summary, exposure to DBP caused significant liver microstructural changes, decreased glycogen content, disturbed the redox status, and affected global gene expression in female rat liver.
Read full abstract