In confluent v-Ha-ras-transformed NIH 3T3 fibroblasts (Ras-NIH 3T3), LC3 downregulation may precede a decrease in canonical autophagy, thus contributing to cell survival. Herein, we aimed to investigate the role of alternative autophagy in the viability of long-term cultures of Ras-NIH 3T3 cells and their parental NIH 3T3 cells. As cell confluence increased with the culture period, the level of alternative autophagy, as assessed through Lamp2-Rab9 co-localization, gradually decreased in both cell lines. However, Ras-NIH 3T3 cells maintained higher levels of alternative autophagy than the parental cells did. Rab9 knockdown minimally affected NIH 3T3 cells while drastically reducing the viability of Ras-NIH 3T3 cells, which suggested that alternative autophagy plays a critical role in Ras-NIH 3T3 cells. In contrast, reactive oxygen species (ROS) production in Ras-NIH 3T3 cells was higher than that in NIH 3T3 cells during long-term culture. Moreover, NIH 3T3 cells exhibited a continual decrease in mitochondrial mass, whereas Ras-NIH 3T3 cells maintained high mitochondrial mass. Immunofluorescence analysis of mitochondrial membrane marker proteins and mitochondrial membrane potential (MMP) also demonstrated a temporal pattern of changes similar to those of mitochondrial mass. This finding could be attributed to the relatively higher level of alternative autophagy in Ras-NIH 3T3 cells facilitating the removal of damaged mitochondria. Paclitaxel treatment in Ras-NIH 3T3 cells induced an increase in canonical autophagy rates along with suppression of alternative autophagy. Ras-NIH 3T3 cells showed high sensitivity to paclitaxel at the early stage of culture, but as cell confluence increased, resistance to paclitaxel increased, showing a similar level of cell viability to the vehicle control group. The study findings suggest that alternative autophagy is more important than canonical autophagy for maintaining cell survival in response to an unfavorable environment, such as during high cell confluence and exposure to anticancer agents.
Read full abstract