As a novel drug delivery system, microspheres improve the efficacy of a drug, increase the time of action, lower the number of times in which a dosage form needs to be administered, and to increase patient compliance. Oral administration side effects such as gastric irritation are lessened through the use of microspheres. Ionotropic gelation was used to create HPMC K15M, Guar gum, and Carbopol 934 microspheres with different concentrations of Carbopol 934 polymer. Cross-linking was accomplished with the use of calcium chloride. In order to conduct a systematic evaluation of all the preparations, we performed various tests: morphology, FTIR, DSC, entrapment efficiency, size, microsphere size, and in-vitro drug release. The discrete, free-flowing, and spherical particles of prepared Stavudine microspheres were found. In compliance with standards, the mean particle size was in the range of 72.64 to 95.22 percent. In vitro drug release studies were performed in phosphate buffer solution with a pH of 6.8. As the concentration of sodium alginate and calcium chloride increased, the percentage of drug release was reduced. In the case of F9 formulation, which contained Stavudine, the decreased drug release rate was obtained via carbopol 934(1:3), sodium alginate, and calcium chloride. Conclusively, the present study shows that Stavudine microsphere preparation and formulation F9 are successful. Stavudine microspheres must be prepared in order to preserve an effective drug concentration in serum for a long time, while reducing gastrointestinal irritation.
Read full abstract