Deep eutectic solvents (DES) are renowned for their effectiveness in deconstructing lignocellulose and extracting lignin, yet the challenges lie in lignin condensation and the disposal of the DES remnants after pretreatment. To overcome these issues, this work proposed a holistic strategy utilizing deep eutectic solvent (DES)-driven lignocellulose deconstruction to upgrade lignocellulose into nitrogen-doped carbon dots (CDs) and iron-decorated porous carbons, serving as photocatalysts and adsorbents, respectively. These nitrogen-doped CDs via the choline chloride/FeCl3 DES pretreatment exhibited abundant nitrogen/oxygen functional groups, enhancing photocatalytic activities and facilitating effective charge separation and transfer. The photocatalytic efficiency of the CDs on dyes reached 97 % under acidic conditions primarily, and free radical quenching experiments indicated that singlet oxygen was the dominant oxidant species. Moreover, the adsorption capabilities of Fe-decorated porous carbons for Congo red reached 2432.3 mg·g−1, surpassing most existing carbon materials. The adsorption mechanism was due to a synergistic effect including physical adsorption, coordination, hydrogen bonding, electrostatic, and π-π interactions. This study proposed a synergetic conversion of DES and lignocellulose into functional carbon materials for wastewater remediation, which inspired the development of a green and cost-effective biorefinery.
Read full abstract