Recently, dynamic memristor (DM)-cellular neural networks (CNNs) have received widespread attention due to their advantage of low power consumption. The previous works showed that DM-CNNs have at most 318 equilibrium points (EPs) with n=16 cells. Since time delay is unavoidable during the process of information transmission, the goal of this article is to research the multistability of DM-CNNs with time delay, and, meanwhile, to increase the storage capacity of DM-delay (D)CNNs. Depending on the different constitutive relations of memristors, two cases of the multistability for DM-DCNNs are discussed. After determining the constitutive relations, the number of EPs of DM-DCNNs is increased to 3n with n cells by means of the appropriate state-space decomposition and the Brouwer's fixed point theorem. Furthermore, the enlarged attraction domains of EPs can be obtained, and 2n of these EPs are locally exponentially stable in two cases. Compared with standard CNNs, the dynamic behavior of DM-DCNNs shows an outstanding merit. That is, the value of voltage and current approach to zero when the system becomes stable, and the memristor provides a nonvolatile memory to store the computation results. Finally, two numerical simulations are presented to illustrate the effectiveness of the theoretical results, and the applications of associative memories are shown at the end of this article.
Read full abstract