Reintroducing computer science (CS) education in K–12 schools to promote computational thinking (CT) has attracted significant attention among scholars and educators. Among the several essential components included in CS and CT education, program debugging is an indispensable skill. However, debugging teaching has often been overlooked in K–12 contexts, and relevant empirical studies are lacking in the literature. Moreover, novices generally have poor performance in domain knowledge and strategic knowledge concerning debugging. They also consistently experience a high cognitive burden in debugging learning. To address these gaps, we developed a flipped systematic debugging approach combined with a systematic debugging process (SDP) and the modeling method. A quasi-experimental study was conducted to explore the effectiveness of this flipped systematic debugging approach, in which 83 fifth-grade students attended the flipped debugging training lessons with the SDP–modeling method, and 75 fifth-grade students attended the unassisted flipped debugging training lessons without the SDP–modeling method. The results indicated that flipped debugging training using the SDP–modeling method improved students’ debugging skills. The results from the questionnaire showed that the proposed teaching approach increased the students’ investment in germane cognitive load by promoting schema construction. It also helped reduce students’ intrinsic and extraneous cognitive load in learning.
Read full abstract