BackgroundClinical outcomes of patients with end-stage kidney disease (ESKD) secondary to membranous nephropathy (MN) have not been well described. This study aimed to evaluate patient and/or allograft outcomes of dialysis or kidney transplantation in patients with ESKD secondary to MN.Material and methodsAll adult patients with ESKD commencing renal replacement therapy in Australia and New Zealand from January 1998 to December 2010 were extracted retrospectively from ANZDATA registry on 31st December 2013. Outcomes of MN were compared to other causes of ESKD. In a secondary analysis, outcomes of MN were compared to all patients with ESKD due to other forms of glomerulonephritis.ResultsOf 32,788 included patients, 417 (1.3%) had MN. Compared to other causes of ESKD, MN experienced lower mortality on dialysis (adjusted hazard ratio [aHR] 0.79, 95% CI 0.68–0.92, p = 0.002) and following kidney transplantation (aHR 0.57, 95% CI 0.33–0.97, p = 0.04), had a higher risk of death-censored kidney allograft failure (aHR 1.55, 95% CI: 1.00–2.41, p = 0.05) but comparable risk of overall kidney allograft failure (aHR 1.35, 95% CI 0.91–2.01, p = 0.13). Similar results were obtained using competing-risk regression analyses. MN patients were significantly more likely to receive a kidney transplant (aHR 1.38, 95% CI 1.16–1.63, p<0.001) and to experience primary kidney disease recurrence in the allograft (aHR 4.92, 95% CI 3.02–8.01, p<0.001). Compared to other forms of glomerulonephritis, MN experienced comparable dialysis and transplant patient survival, but higher rates of kidney transplantation, primary renal disease recurrence and death-censored allograft failure.ConclusionMN was associated with superior survival on dialysis and following kidney transplantation compared to patients with other causes of ESKD, and comparable patient survival compared to patients with other forms of glomerulonephritis. However, patients with MN exhibited a higher rate of death-censored allograft loss as a result of primary kidney disease recurrence.
Read full abstract