Context The tooth alignment and leveling constitute the preliminary clinical phase of any orthodontic procedure with fixed appliances. It has been accepted in orthodontics the principle that light and continuous forces would be desirable for physiologic and controlled tooth movement. For this purpose, it has been suggested that nickel-titanium (NiTi) archwires which offer a force-bending curve with a defined baseline and a larger activation range should be used Aims The aim of this study was to evaluate and compare the force versus deflection properties of different brands of NiTi wires available in market. Settings and Design Null hypothesis. There is no difference in force-deflection properties between different brands of same dimension NiTi archwires available in market. A cross-sectional study design was planned. Subjects and Methods Different companies were identified producing their own version or marketing NiTi archwires of the following sizes: 0.016 inch round and 0.016 × 0.022 inch rectangular were selected because all companies produced or marketed these particular sizes, and in addition, these were selected because these wire sizes are commonly used clinically. The three-point bend test was utilized to test the various wires in accordance with the ISO 15841 standard for orthodontic wires with the exception that the bottom support span was 16 mm rather than 10 mm due to fixture limitations. Statistical Analysis Used Data obtained from different brands of wires available in the Indian market Ormco, American Orthodontics, Ortho Organizers, Rocky Mountain Orthodontics 3M and MO which are manufactured in U.S.A, While as Natural, Orthomatix, JJ Orthodontics, Koden, Gdc, Rabbit force, and Optima are manufactered in china. and size 0.016 inch round wire and 0.16x0.022 inch rectangular wires were compared using ANOVA test. Statistical analysis was performed using SPSS 2.1. Results In this study, the data show that minimum force during activation of 0.016 inch round wire at 1 mm was 95 ± 10 g whereas maximum was 165 ± 10 g with a difference of 70 ± 20 g. Whereas at 3 mm activation, minimum force generated was 150 ± 10 g and maximum was 225 ± 10 g with a difference of 75 ± 20 g. In 0.016 × 0.022 inch rectangular wire, minimum activation force at 1 mm deflection was 210 ± 10, whereas maximum was 340 ± 10 with a difference of 130 ± 20 g. For deactivation, the minimum force for 0.016 wire at 1 mm deflection was 40 ± 10, whereas maximum force was 125 ± 10 with a difference of 85 ± 20 g, and for the 0.016 × 0.022 wire, the minimum load at 1 mm deflection was 150 ± 10 g, whereas the maximum was 295 ± 10 g with a difference of 145 ± 20 g. The deactivation force in majority of brands (8) at 1 mm deflection was <80 g whereas at 3 mm, majority brands have force levels >150–195 g. The deactivation force at 3 mm deflection in five brands was between 235 and 335 and five other brands between 335 and 445 whereas at 1 mm, deflection majority of brands was between 170 and 200 g. Conclusion From this data, a comparative evaluation shows that there is a huge difference in force-deflection properties of same dimension wire from different brands, which means that its making the orthodontic treatment more indeterminate; some wires have shown less and some have shown more force. Wires of the same materials, dimensions, but from different manufacturers do not always have the same mechanical properties. There are significant differences in the activation and deactivation forces among the different manufacturers of NiTi archwires. Improvements should be made in the standardization of the manufacturing testing process of NiTi archwires to provide orthodontists with NiTi archwires that have consistent mechanical properties despite the manufacturing brand that produces them.
Read full abstract