A classification-based segmentation method is proposed to quantify synovium in rheumatoid arthritis (RA) patients using a deep learning (DL) method based on time-intensity curve (TIC) analysis in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). This retrospective study analyzed a hand MR dataset of 28 RA patients (six males, mean age 53.7years). A researcher, under expert guidance, used in-house software to delineate regions of interest (ROIs) for hand muscles, bones, and synovitis, generating a dataset with 27,255 pixels with corresponding TICs (muscle: 11,413, bone: 8502, synovitis: 7340). One experienced musculoskeletal radiologist performed ground truth segmentation of enhanced pannus in the joint bounding box on the 10th DCE phase, or around 5min after contrast injection. Data preprocessing included median filtering for noise reduction, phase-only correlation algorithm for motion correction, and contrast-limited adaptive histogram equalization for improved image contrast and noise suppression. TIC intensity values were normalized using zero-mean normalization. A DL model with dilated causal convolution and SELU activation function was developed for enhanced pannus segmentation, tested using leave-one-out cross-validation. 407 joint bounding boxes were manually segmented, with 129 synovitis masks. On the pixel-based level, the DL model achieved sensitivity of 85%, specificity of 98%, accuracy of 99% and precision of 84% for enhanced pannus segmentation, with a mean Dice score of 0.73. The false-positive rate for predicting cases without synovitis was 0.8%. DL-measured enhanced pannus volume strongly correlated with ground truth at both pixel-based (r = 0.87, p < 0.001) and patient-based levels (r = 0.84, p < 0.001). Bland-Altman analysis showed the mean difference for hand joints at the pixel-based and patient-based levels were -9.46 mm3 and -50.87 mm3, respectively. Our DL-based DCE-MRI TIC shape analysis has the potential for automatic segmentation and quantification of enhanced synovium in the hands of RA patients.
Read full abstract