Histological analysis of the testicular sections is paramount in infertility research but tedious and often requires months of training and practice. Establish an expeditious histopathological analysis of mutant mice testicular sections stained with commonly available hematoxylin and eosin (H&E) via enhanced deep learning model MATERIALS AND METHODS: Automated segmentation and cellular composition analysis on the testes of six mouse reproductive mutants of key reproductive gene family, DAZ and PUMILIO gene family via H&E-stained mouse testicular sections. We improved the deep learning model with human interaction to achieve better pixel accuracy and reduced annotation time for histologists; revealed distinctive cell composition features consistent with previously published phenotypes for four mutants and novel spermatogenic defects in two newly generated mutants; established a fast spermatogenic defect detection protocol for quantitative and qualitative assessment of testicular defects within 2.5-3h, requiring as few as 8 H&E-stained testis sections; uncovered novel defects in AcDKO and a meiotic arrest defect in HDBKO, supporting the synergistic interaction of Sertoli Pum1 and Pum2 as well as redundant meiotic function of Dazl and Boule. Our testicular compositional analysis not only could reveal spermatogenic defects from staged seminiferous tubules but also from unstaged seminiferous tubule sections. Our SCSD-Net model offers a rapid protocol for detecting reproductive defects from H&E-stained testicular sections in as few as 3h, providing both quantitative and qualitative assessments of spermatogenic defects. Our analysis uncovered evidence supporting the synergistic interaction of Sertoli PUM1 and PUM2 in maintaining average testis size, and redundant roles of DAZ family proteins DAZL and BOULE in meiosis.
Read full abstract