Salt stress affects plant physiology, development, and growth. This research investigated varied salinity levels on growth traits and ions accumulation of four zoysiagrasses and aimed to identify phenotypic traits associated with variability in salinity tolerance. In this study, “S001” zoysiagrass (Zoysia sinica), “Diamond” zoysiagrass (Zoysia matrella), “J026” zoysiagrass (Zoysia japonica), and “M001” zoysiagrass (Zoysia macrostachya) were grown in plastic pots and exposed to 1/2 Hoagland nutrient solution amended with different amounts of NaCl for 120 days. At the end of the experiment, growth traits and ion contents were determined. The results showed that the salt-tolerance of four zoysiagrasses ranked as “M001” > “Diamond” > “J026” > “S001” according to percent green leaf canopy area (GLCA) after 120 days of salinity treatment. Although dry leaf weight, leaf length/width, and shoot height were significantly decreased by salinity treatments for all turfgrasses, the salt-tolerant species had a smaller drop. Besides, ions secretion capacity and Na+ concentration in leaf and root increased, but K+ concentration together with leaf and root K+/Na+ ratios decreased with the increasing concentration of the salinity. However, the salt-tolerant species exhibited strong K+ absorption and transportation ability and a high salt secretion capacity. The results indicated that growth traits and ions regulation were related to variability in tolerance of diverse zoysiagrasses to salt stress.