In the era of Industry 5.0, with the deep convergence of Industrial Internet of Things (IIoT) and 5G technology, stable transmission of massive data in heterogeneous networks becomes crucial. This is not only the key to improving the efficiency of human–machine collaboration, but also the basis for ensuring system continuity and reliability. The arrival of 5G has brought new challenges to the communication of IIoT in heterogeneous environments. Due to the inherent characteristics of wireless networks, such as random packet loss and network jitter, traditional transmission control schemes often fail to achieve optimal performance. In this paper we propose a novel transmission control algorithm, aBBR. It is an augmented algorithm based on BBRv3. aBBR dynamically adjusts the sending window size through real-time analysis to enhance the transmission performance in heterogeneous networks. Simulation results show that, compared to traditional algorithms, aBBR demonstrates the best comprehensive performance in terms of throughput, latency, and retransmission. When random packet loss exists in the link, aBBR improves the throughput by an average of 29.3% and decreases the retransmission rate by 18.5% while keeping the transmission delay at the same level as BBRv3.
Read full abstract