Developing and deploying renewables in existing energy systems are pivotal in Europe’s transition to net-zero emissions. In this transition, gas turbines (GTs) will be central for balancing purposes. However, a significant hurdle in minimising emissions of GTs operating in combination with intermittent renewables arises from the reliance on unreliable meteorological forecasts. Here, we propose a hierarchical framework for decoupling this operational problem into a balancing and emissions minimisation problem. Balancing is ensured with a high-level stochastic balancing filter (SBF) based on data-driven stochastic grey-box models for the uncertain intermittent renewable. The filter utilises probabilistic forecasting and less conservative chance constraints to compute safe bounds, within which a proposed low-level economic predictive controller further minimises emissions of the GTs during operations. As GTs exhibit semi-continuous operating regions, complementarity constraints are utilised to fully exploit each GT’s allowed operational range. The proposed method is validated in simulation for a gas-balanced hybrid renewable system with batteries, three GTs with varying capacities, and a wind farm. Using real historical operational wind data, our simulation shows that the proposed framework balances the energy demand and minimises emissions with up to 4.35% compared with other conventional control strategies in simulation by minimising the GT emissions directly with complementarity constraints in the low-level controller and indirectly with less conservative chance constraints in the high-level filter. The simulations show that the computational cost of the proposed framework is well within requirements for real-time applications. Thus, the proposed operational framework enables increased renewable share in hybrid energy systems with GTs and renewable energy and subsequently contributes to de-carbonising these types of isolated or grid-connected systems onshore and offshore.
Read full abstract