Sounding rockets typically feature an axially symmetric design and are launched vertically to facilitate research and high-altitude atmospheric data collection. Manufacturing errors can cause axial asymmetry, leading to undesirable rocket trajectory dispersion. Sounding rockets are often designed to spin around their axis to mitigate these effects. However, axial spinning motion can resonate with short-period oscillations, creating large normal loads that may damage the rocket’s structures. This paper focuses on analyzing the variations in the pitching frequency, which may help predict the roll resonance phenomenon. In this study, the authors constructed a six-degree-of-freedom dynamic model for a sounding rocket, considering all aerodynamic problems and the variation of inertial characteristics. To determine the pitching frequency, an impulse is applied to the rocket to generate short-period oscillation. The Fourier transform is then used to analyze and obtain the frequency of the rocket while oscillating in space. The results demonstrate agreement with the theoretical model, thereby substantiating the validity of the current method. The findings of this research provide valuable recommendations for the design and manufacturing process of sounding rockets, which may help mitigate the adverse effects of motion resonance during flight.