(Abridged) The abundances of alpha-elements are a powerful diagnostic of the star formation history and chemical evolution of a galaxy. Sulphur, being moderately volatile, can be reliably measured in the interstellar medium (ISM) of damped Ly-alpha galaxies and extragalactic HII regions. Measurements in stars of different metallicity in our Galaxy can then be readily compared to the abundances in external galaxies. Such a comparison is not possible for Si or Ca that suffer depletion onto dust in the ISM. Furthermore, studying sulphur is interesting because it probes nucleosynthetic conditions that are very different from those of O or Mg. The measurements in star clusters are a reliable tracers of the Galactic evolution of sulphur. We find <A(S)>NLTE=6.11+/-0.04 for M 4, <A(S)>NLTE=7.17+/-0.02 for NGC 2477, and <A(S)>NLTE=7.13+/-0.06 for NGC 5822. For the only star studied in Trumpler 5 we find A(S)NLTE=6.43+/-0.03 and A(S)LTE=6.94+/-0.05. Our measurements show that, by and large, the S abundances in Galactic clusters trace reliably those in field stars. The only possible exception is Trumpler 5, for which the NLTE sulphur abundance implies an [S/Fe] ratio lower by roughly 0.4 dex than observed in field stars of comparable metallicity, even though its LTE sulphur abundance is in line with abundances of field stars. Moreover the LTE sulphur abundance is consistent only with the abundance of another alpha-element, Mg, in the same star, while the low NLTE value is consistent with Si and Ca. The S abundances in our sample of stars in clusters imply that the clusters are chemically homogeneous for S within 0.05 dex.