In this work, we provide a hydrocode simulation model for high-velocity projectile impact against ultra-high-performance concrete targets and establish a methodology to extract damage quantities from the simulation results. In the parameter derivation process, published and own data stemming from material experiments, such as uniaxial, triaxial, and planar plate impact tests, are used as a starting point. To fill the systematic gaps of strength data for pressures of 1 GPa to 5 GPa and for fractured concretes, residual velocities of projectiles and qualitative target damage information from ballistic experiments with high-hard steel spheres are additionally used as a reference in parametric simulations. All criteria from the comparatively broad data basis are successfully reproduced by the simulation model simultaneously. The simulated damage quantities derived by the proposed extraction procedure are reasonable counterparts to the corresponding experimental measures from earlier published works, allowing a new quality of comparison between both worlds.
Read full abstract