Earth-fill dams serve as crucial agricultural structures in Japan and act as buffers against flooding. However, their failure often tends to cause even greater downstream damage. Consequently, there is an urgent need for a quantitative assessment of the risks to earth-fill dams posed by disasters. The current detailed method of assessment is complicated, labour-intensive, and costly; hence, constructing risk surrogate models will greatly reduce the workload. This study employs two machine learning methods, GPR (Gaussian Process Regression) and XGBoost (eXtreme Gradient Boost), to develop surrogate models for assessing the damage cost and overtopping probability for 70 earth-fill dams in Okayama and Hiroshima prefectures, Japan. The predictive performance of each model was quantified by comparing the results against those of the detailed method. From the results, XGBoost demonstrates superior performance compared to GPR based on the comparison of coefficient of determination (R2) and root mean square error (RMSE). To clarify the extent to which the variables influence the XGBoost model, the SHapley Additive exPlanations (SHAP) algorithm was implemented. It offers an efficient and interpretable avenue for earth-fill dam risk assessments.