The expansion of potentially hazardous glacial lakes is a symptom of global warming during this interglacial period. A pertinent example is the Jiongpu glacial lake in southeastern Tibet, the area of which has expanded approximately fivefold in the last half-century. However, recently, the glacier tongue has retreated to a high steep slope, and the rate of retreat of the glacier and expansion of the lake have temporarily slowed. The risk of a glacier tongue landslide after glacier detachment and subsequent glacial lake outburst flood (GLOF) needs to be assessed. In this study, we employed a combination of unmanned aerial vehicle (UAV), sonar, geological radar, remote sensing, field investigation, sampling, drilling, and dating techniques to determine the critical parameters of potential GLOFs, including glacier tongue geometry, lake bathymetry, and moraine dam geometry and composition. Utilizing empirical models and multiphase flow models, we identified the most hazardous triggers and simulated the processes of a glacier tongue landslide into the lake, moraine dam overtopping by a displacement wave, and subsequent flood evolution. The results showed that the most hazardous trigger in volume is a glacier tongue landslide, accounting for 58.29 % of all triggers associated with potential GLOFs. Lapped by the largest glacier tongue landslide impulse wave, the moraine dam would not fail because the minimum safety factor is approximately 1.66 ± 0.7 according to empirical methods and geological slope simulation. However, overtopping would occur, resulting in a peak discharge of approximately 9740 ± 4137 m3/s at the moraine dam based on r.avaflow calculations. The flood would reach the densely populated Jinling township and inundate approximately 46 ± 4.55 % of the houses according to HEC-RAS. Reducing the water level of the glacial lake represents an effective strategy for mitigating potential losses. This concise, physics-based method effectively assesses GLOF triggers and processes and can be applied to risk assessments of other expanding glacial lakes.
Read full abstract