It is well-established that the dam and seqA genes act in the biofilm production in Salmonella. However, the molecular basis underlying this activity remains unexplored. This study aims to address this gap in the literature. In this study, comparative Fourier Transform Infrared (FT-IR) Spectroscopy and Raman spectral analyses were conducted to investigate the molecular basis of decreases in swimming, swarming motility, and biofilm characteristics observed in the dam and seqA gene mutants of S. Typhimurium DMC4 wild-type strain. The comparative analysis revealed a pronounced reduction in proteins, lipids, carbohydrates, and nucleic acids within the biofilm structures of mutant strains. These findings confirm that these macromolecules are crucial for the integrity and functionality of biofilm structures. FT-IR analysis showed that while amide-I bands decreased in the biofilm structures of mutant strains, amide-II bands increased compared to the wild-type strain. Similarly, Raman analyses indicated an increase in amide-IV bonds and a decrease in amide-V bonds. The parallelism between FT-IR and Raman spectral analysis results, particularly regarding amide I, amide V, amide II, and amide IV bands, is noteworthy. Additionally, these findings may lead to the development of markers for rapidly diagnosing transitions from planktonic to biofilm form in Salmonella. The substantial decrease in β-glucans and lipids, including cellulose, within the biofilm matrix of mutant strains highlights the critical role these polymers play in swimming and swarming motility. Given the clinical and industrial importance of Salmonella biofilms, it is crucial to develop strategies to prevent biofilm formation and identify target molecules that can inhibit biofilm formation. The results of our study suggest that β-glucans and amides are essential targets in the effort to combat Salmonella biofilms.
Read full abstract