Milk and dairy products are important in the human diet not only for the macronutrients, such as proteins and fats, that they provide, but also for the supply of essential micronutrients, such as minerals. Minerals are present in milk in soluble form in the aqueous phase and in colloidal form associated with the macronutrients of the milk. These 2 forms affect the nutritional functions of the minerals and their contribution to the technological properties of milk during cheese making. The aim of the present work was to study and compare the detailed mineral profiles of dairy foods (milk, whey, and cheese) obtained from cows, buffaloes, goats, ewes and dromedary camels, and to analyze the recovery in the curd of the individual minerals according to a model cheese-making procedure applied to the milk of these 5 dairy species. The detailed mineral profile of the milk samples was obtained by inductively coupled plasma-optical emission spectroscopy. We divided the 21 minerals identified in the 3 different matrices into essential macro- and microminerals, and environmental microminerals, and calculated the recovery of the individual minerals in the cheeses. The complete mineral profiles and the recoveries in the cheeses were then analyzed using a linear mixed model with Species, Food, and their interaction included as fixed effects, and Sample within Species as a random effect. The mineral profiles of each food matrix were then analyzed separately with a general linear model in which only the fixed effect of Species was included. The results showed that the species could be divided into 2 groups: those producing a more diluted milk characterized by a higher content of soluble minerals (in particular, K), and those with a more concentrated milk with a higher colloidal mineral content in the skim of the milk (such as Ca and P). The recoveries of the minerals in the curd were in line with the initial content in the milk, and also highlighted the fact that the influence of the brine was not limited to the Na content but to its whole mineral makeup. These results provide valuable information for the evaluation of the nutritional and technological properties of milk, and for the uses made of the byproducts of cheese making from the milk of different species.
Read full abstract