ObjectiveTo evaluate the safety and efficacy of computed tomography (CT)-guided microwave ablation combined with vertebral augmentation under real-time temperature monitoring in the treatment of painful osteogenic spinal metastases.MethodsThis retrospective study included 38 patients with 63 osteogenic metastatic spinal lesions treated using CT-guided microwave ablation and vertebral augmentation under real-time temperature monitoring. Visual analog scale scores, daily morphine consumption, and Oswestry Disability Index scores were used to evaluate efficacy of the treatment.ResultsMicrowave ablation combined with vertebral augmentation reduced the mean visual analog scale scores from 6.40 ± 1.90 preoperatively to 3.32 ± 0.96 at 24 h, 2.24 ± 0.91 at 1 week, 1.92 ± 1.32 at 4 weeks, 1.79 ± 1.45 at 12 weeks, and 1.39 ± 1.12 at 24 weeks postoperatively (all p < 0.001). The mean preoperative daily morphine consumption was 108.95 ± 56.41 mg, which decreased to 50.13 ± 25.46 mg at 24 h, 31.18 ± 18.58 mg at 1 week, 22.50 ± 16.63 mg at 4 weeks, 21.71 ± 17.68 mg at 12 weeks, and 17.27 ± 16.82 mg at 24 weeks postoperatively (all p < 0.001). During the follow-up period, the Oswestry Disability Index scores significantly reduced (p < 0.001). Bone cement leakage occurred in 25 vertebral bodies, with an incidence of 39.7% (25/63).ConclusionsThe results indicate that microwave ablation combined with vertebral augmentation under real-time temperature monitoring is a feasible, effective, and safe treatment for painful osteoblast spinal metastases.