Power load forecasting is an important part of modern smart grid operation management. Accurate forecasting guides the efficient and stable operation of the power system. In this paper, a fuzzy C-means clustering algorithm and an improved locally weighted linear regression model are proposed for short-term power load forecasting. First, the fuzzy C-means clustering algorithm is used to cluster the power load. Make the power consumption behavior of load data of the same category similar and use the power consumption load data of the same category as the training sample. Then, to solve the problem of large calculation and insufficient fitting of the locally weighted linear regression model, the k-nearest neighbor range constraint is introduced into the model for daily load forecasting. Finally, the effectiveness of the method is verified by a simulation example. Experimental results show that this method can effectively improve the accuracy and generalization ability of power load forecasting compared with other methods.
Read full abstract