Arsenic exposure is a significant public health issue, with harmful effects caused by its use in commercial products such as car batteries, pesticides, and herbicides. Arsenic has three main compounds: inorganic, organic, and arsine gas. Inorganic arsenic compounds in water are highly toxic. The daily intake of arsenic from food and beverages is between 20 and 300 mcg/day. Arsenic is known for its carcinogenic properties and is classified as a human carcinogen by different institutions. Exposure can lead to oxidative stress, DNA damage, and epigenetic deregulation, which can cause endocrine disorders, altered signal transduction pathways, and cell proliferation. In addition, arsenic can easily cross the placenta, making it a critical concern for maternal and fetal health. Exposure can lead to complications such as gestational diabetes, anemia, low birth weight, miscarriage, and congenital anomalies. Female babies are particularly vulnerable to the negative impact of arsenic exposure, with a higher risk of low weight for gestational age and congenital cardiac anomalies. Therefore, it is crucial to monitor and regulate the levels of arsenic in drinking water and food sources to prevent these adverse health outcomes. Further research is necessary to fully understand the impact of arsenic exposure on human health, especially during pregnancy and infancy, by implementing preventative measures and monitoring the levels of arsenic in the environment.