Progression through the cell cycle is a tightly controlled process that integrates signals generated at the plasma membrane with the proteins that form the cell cycle machinery. The current study chronicles the induction of cyclins, cyclin-dependent kinases (cdk), and cdk inhibitors in low density primary mouse B lymphocytes after anti-immunoglobulin plus interleukin 4 (IgM + IL-4) stimulation. In this system, > 85% of cells remain in the G0/G1 phase of cell cycle for an initial 24-h period, followed by entry of up to 50% of the cells into S phase, commencing around 30 h and peaking at 48 h. Extensive time course analyses of these anti-IgM + IL-4-stimulated B cells revealed that the G1-associated D-type cyclins D2 and D3 were induced by 3 h after stimulation, and that cyclins E, A, and B were subsequently induced sequentially, beginning at mid-G1, G1/S transition, and S phase, respectively. The G1-associated cyclin D1 was not expressed at any stage of the anti-Ig + IL-4-induced B cell cycle. cdk2, cdk4, and cdk6 were induced during G1, whereas cell division cycle-2 (cdc2) was induced concomitantly with S phase. Irrespective of their expression, the kinases cdk2 and cdc2 were only active from S phase onwards, suggesting that productive cyclin/kinase complex formation did not occur until that time. Cell cycle inhibitors p21 and p19 were induced by anti-Ig + IL-4, peaking in expression at mid-G1 and S phase, respectively. Stimulation of low density B cells with anti-Ig + IL-4 caused rapid down regulation of the p27 inhibitor, however this protein was reexpressed at 54-96 h after stimulation. In contrast, B cells stimulated with anti-CD40, a stimulus which induces long-term B cell proliferation, permanently down regulated p27. These findings are consistent with the concept that p27 reexpression contributes to the G1 arrest that follows antigen receptor crosslinking. Low density B cells cultured in the viability-enhancing cytokine IL-4 alone also showed induction of D2 and D3 cyclin expression. However, the D2 expression was transient, and the D3 expression was substantially lower than that observed in B cells induced to proliferate by anti-Ig + IL-4. This partial induction of D2 and D3 expression may explain IL-4's ability to promote B cell entry into G1 but not S phase of cell cycle, and furthermore, its ability to truncate G1 progression when B cells are subsequently stimulated with anti-Ig.