BackgroundChicken may be enriched with 25-hydroxy D3 [25(OH)D3] and docosahexaenoic acid (DHA) to enhance the dietary intake of the public. ObjectivesTwo experiments (Expt.) were conducted to determine the potential and metabolic impacts of enriching both DHA and 25(OH)D3 in the tissues of broiler chickens. MethodsIn Expt. 1, 144 chicks (6 cages/treatment and 6 birds/cage) were fed a corn–soybean meal basal diet (BD), BD + 10,000 IU 25(OH)D3/kg [BD + 25(OH)D3], BD + 1% DHA-rich Aurantiochytrium (1.2 g DHA/kg; BD + DHA), or BD + 25(OH)D3+DHA for 6 wk. In Expt. 2, 180 chicks were fed the BD, BD + DHA-rich microalgal oil (1.5–3.0 g DHA/kg, BD + DHA), BD + DHA + eicosapentaenoic acid (EPA)-rich microalgae (0.3–0.6 g EPA/kg, BD + DHA + EPA), BD + DHA + 25(OH)D3 [6000 to 12,000 IU/kg diet; BD + DHA + 25(OH)D3], and BD + DHA + EPA + 25(OH)D3 for 6 wk. ResultsSupranutrition of these 2 nutrients resulted in 57–62 mg DHA and 1.9–3.3 μg of 25(OH)D3/100 g of breast or thigh muscles. The DHA enrichment was independent of dietary EPA or 25(OH)D3, but that of 25(OH)D3 in the liver was decreased (68%, P < 0.05) by dietary DHA in Expt. 1. Compared with BD, BD + 25(OH)D3 enhanced (P < 0.05) gene expression related to D3 absorption (scavenger receptor class B type 1 and Niemann-pick c1 like 1) in the liver and D3 degradation (cytochrome P450 24A1) in the breast, and decreased mRNA or protein concentrations of vitamin D binding protein in the adipose tissue or thigh muscle. Supranutrition of DHA decreased mRNA concentrations of lipid metabolism-related genes (fatty acid desaturase 1,2, ELOVL fatty acid elongase 5, fatty acid desaturase 2, fatty acid synthase, and sterol regulatory element-binding protein 1). ConclusionsBoth DHA and 25(OH)D3 were enriched in the muscles up to meeting 50%–100% of the suggested intakes of these nutrients by consuming 2 servings of 100 g of fortified chicken. The enrichments altered gene expression related to lipid biosynthesis and vitamin D transport or storage.
Read full abstract