This review focuses on diffractive physics, which involves the long-range interactions of strong nuclear force at high energies described by SU(3) gauge symmetry. It is expected that diffractive processes account for nearly 40% of the total cross-section at LHC energies. These processes consist of soft-scale physics where perturbation theory cannot be applied. Although highly successful and often described as a perfect theory, quantum chromodynamics relies heavily on perturbation theory, a model best suited for hard-scale physics. The study of pomerons could help bridge the soft and hard processes and provide a complete description of the theory of the strong interaction across the full momentum spectrum. Here, we will discuss some of the features of diffractive physics, experimental results from SPS, HERA, and the LHC, and where the field could potentially lead. With the recent publication of the odderon discovery in 2021 by the D0 and TOTEM collaborations and the new horizon of physics that lies ahead with the upcoming Electron-Ion Collider at Brookhaven National Laboratory, interest is seemingly piquing in high energy diffractive physics.