The goal of the present paper is to establish a framework which allows to rigorously determine the large-scale Gaussian fluctuations for a class of singular SPDEs at and above criticality, and therefore beyond the range of applicability of pathwise techniques, such as the theory of Regularity Structures. To this purpose, we focus on a d-dimensional generalization of the Stochastic Burgers equation (SBE) introduced in van Beijeren et al. (Phys Rev Lett 54(18):2026–2029, 1985. https://doi.org/10.1103/PhysRevLett.54.2026). In both the critical d=2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$d=2$$\\end{document} and super-critical d≥3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$d\\ge 3$$\\end{document} cases, we show that the scaling limit of (the regularised) SBE is given by a stochastic heat equation with non-trivially renormalised coefficient, introducing a set of tools that we expect to be applicable more widely. For d≥3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$d\\ge 3$$\\end{document} the scaling adopted is the classical diffusive one, while in d=2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$d=2$$\\end{document} it is the so-called weak coupling scaling which corresponds to tuning down the strength of the interaction in a scale-dependent way.
Read full abstract