To compare and evaluate the differences between EGCG and phosphatidylcholine-encapsulated EGCG in terms of their anti-inflammatory and antioxidant capacities. In this study, transdermal absorption experiments were conducted to compare the absorption capacity of EGCG and phosphatidylcholine-encapsulated EGCG. Subsequently, the disparity in anti-inflammatory and antioxidant efficacy between EGCG and phosphatidylcholine-encapsulated EGCG were evaluated through cytotoxicity experiments, as well as the determination of cellular inflammatory factors and the measurement of ROS content under different treatment conditions. The concentration of EGCG, encapsulated in phosphatidylcholine, in porcine skin is 40.76 ± 1.29 μg/cm2, which is significantly higher than the concentration of EGCG alone (31.62 ± 2.01 μg/cm2). Also, the ability of phosphatidylcholine-encapsulated EGCG to suppress inflammatory factors such as tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2) was notably superior to that of EGCG alone. Both phosphatidylcholine-encapsulated EGCG and EGCG showed excellent ROS scavenging ability in terms of antioxidant capacity. The percutaneous absorption and anti-inflammatory impact of EGCG encapsulated within phosphatidylcholine were substantially enhanced when compared to EGCG by itself. Additionally, both formulations exhibited enhanced ROS scavenging capacities, albeit the variance between them was not pronounced. These insights furnish a vital theoretical underpinning for the utilization of phosphatidylcholine-encapsulated EGCG in cosmetic applications, specifically for fostering products with anti-inflammatory and antioxidant benefits.