Authors prepared a nanoselenium particle stabilized with Sargassum fusiforme polysaccharide (SFPS-Tw-SeNPs) and confirmed that it could effectively inhibit the proliferation of A549 lung cancer cells in vitro. The aim of this study was to investigate its anti-lung cancer effect in vitro and in vivo and its possible mechanism. In cell experiments, AO/EB staining revealed that SFPS-Tw-SeNPs could induce the apoptosis of A549 cells and produce red fluorescence by inserting into DNA through damaged cell membranes, increasing the production of reactive oxygen species (ROS). SFPS-Tw-SeNPs that is loaded with coumarin-6 entered the cells in a concentration-dependent and time-dependent manner, acting on the mitochondria, reducing the mitochondrial membrane potential, increasing the Bax/Bcl-2 ratio, and increasing the expression of Cleaved-Caspase 3, Cleaved-Caspase 9, Cleaved-PARP and Cytochrome C-induced apoptosis in cells. In addition, the SFPS-Tw-SeNPs blocked the PI3K/AKT signalling pathway, downregulated the expression of Cyclin-A and CDK2, upregulated the expression of P21, and arrested the cell in the G1 phase. In animal experiments, SFPS-Tw-SeNPs treatment significantly inhibited the growth of A549 tumour xenografts but did not significantly negatively affect the body of the animals. Overall, SFPS-Tw-SeNPs have the potential to be developed as a pharmaceutical drug to prevent and treat non-small cell lung cancer.
Read full abstract